Pullasorsa kirjoitti:
No lukiossa ei muistaakseni raja-arvosta juuri muuta opittu kuin laskusääntöjä, mutta TTY:llä varmaan sentään opittiin myös epsilon-delta-määritelmät yms.? Reaalilukujen määritelmä on vissiin kuitenkin jääneet vähemmälle, kun pitää tästä asiasta niin jankata :).
Ajan hammas on syönyt suurimman osan matematiikan osaamisestani, lukiosta pääsin vuonna 1999, ja TTY:n matemattikan kursseista suurimman osan olin suorittanut vuoteen 2002 mennessä. Sen jälkeen tulikin enää tilastomatematiikan kurssi, jonka menin tenttimällä läpi lukion matematiikan avulla. :)
Pullasorsa kirjoitti:
Lyhyesti vielä kerran: 0,999... on matematiikassa esitysmuoto sille luvulle, jota kohti geometrinen sarja 0,9 + 0,09 + 0,009... lähestyy. Tämä arvo sattuu olemaan 1. Aivan vastaavasti kuin 0,333... on lyhennelmä arvolle, jota sarja 0,3 + 0,03 + 0,003... lähestyy, eli 1/3.
Voi toki olla, että asian mennessä syvällisemmäksi, aiemmin opetetut teoriat myönnetäänkin sitten oletuksiksi, eli minulle opetettu "0.9999... :n raja-arvo on yksi" onkin ollut virheellinen teoria. Samanlaisia yksinkertaistuksia on tullut vastaan myös esimerkiksi enemmän opiskelemassani elektroniikassa. Tyyliin: peruskursseilla opetetaan, että diodilla on kynnysjännite. Syventävillä kursseilla myönnetäänkin: "ei diodilla mitään kynnysjännitettä ole"... ehkä tässäkin on sama homma.
Minulle opetetun mukaan tuo 1 on edelleen raja-arvo, jota kohti mennään, kun lisätään aina vaan pienempi luku nollan ja monen desimaaliyhdeksikön perään. Mutta tuota raja-arvoa ei silti saavutettaisi. Taidan nyt sortua tässä tähän Aristoteleen esittämään Xenon paradoksiin (vai mikä se nyt olikaan)...
Pullasorsa kirjoitti:
Tämä linkki taisikin täällä jo olla, mutta tuolla on siis useampikin todistus tuolla lauseelle, milläs perusteella ne kaikki eri todistukset kumositkaan?
http://en.wikipedia.org/wiki/Proof_that_0.999..._equals_1
Aloin tuossakin pohtimaan sitä, että eikös suppenevan geometrisen sarjan summa ole myöskin raja-arvo? Siinähän lisätään aina vaan pienempää lukua jo saatuun summaan? Siinä mielessähän ainakaan sillä todistuksella ei tulla tässä yhteydessä hullua hurskaammaksi.
Pullasorsa kirjoitti:
Täällä vielä bonuksena reaaliluvun määritelmä, sieltä voi lueskella niistä sarjajutuista, jos kiinnostaa:
http://en.wikipedia.org/wiki/Real_number
Pitää tsekkailla, kyllä näitä sarjajuttuja on joskus tullut jankattua aika paljonkin, mutta noista insinöörimatematiikan kursseista on aikaa jo hyvin kauan...